
www.ten10.com+44 (0) 20 3697 1444

Effective optimisation of systems through early performance testing

The client was actively developing the
solution during Ten10’s involvement. An
external supplier managed the infrastructure
on which the solution was to be deployed,
and made available a number of virtual
environments for development and testing.

The solution relied on the Drupal CMS for
the front-end and on MuleSoft ESB for the
integration with third-party and client services.
ForgeRock was used for authentication
purposes. The solution also employed proxy
and caching technologies, such as Varnish and
Memcached, to improve server performance.

The client was looking to performance-test the
solution in order to ensure that the production
system would be able to handle expected
and peak loads, while identifying the capacity
of the application under gradually increasing
load. Initially, traffic would be coming from the
piloting council, but the system was designed
to handle to up to five councils concurrently.

The client: A leading, global, professional
services firm

Industry: Professional services

Technologies: SaaS, Drupal CMS, MuleSoft ESB,
proxy and caching technologies

Ten10 services: Performance testing

The client

The client is a leading, global, professional
services firm. Their aim is to help
organisations and individuals create the
value they’re looking for, by delivering
quality in assurance, tax and advisory
services.

The project

The client was in the process of developing
a new Software-as-a-Service (SaaS)
solution that would be used by local
councils to offer services to the public,
with the additional aim of building best
processes and practices.

The development team also saw
performance as a key success criterion.
The plan was that one particular council
would be the initial, pilot user, although
the system was designed to support
concurrent use by multiple councils in the
future.

Internet
Software

Service

Service

Effective optimisation of systems
through early performance testing

www.ten10.com+44 (0) 20 3697 1444

Effective optimisation of systems through early performance testing

Goals

We needed to understand the performance,
stability, and capacity of the CMS component
of the solution, with expected peak user
volumes of 175 concurrent users and a
peak load of 300 concurrent users. Specific
performance metrics for the system were
that 80 percent of all server transaction times
should be under three seconds under peak

load, that average CPU utilisation was under
70 percent, and that the time taken for the
enterprise service bus to process a message
was under 40ms end-to-end under peak load.

Further, we wanted to investigate the capacity
of the application by gradually increasing the
load until the system became unresponsive or
the load generation servers become saturated.
Following the system stress testing, we wanted
to analyse the results, diagnose potential
performance issues, recommend actions, and
investigate the effect of the identified solutions.

Challenges

Among the challenges were the complexity
of the system and the fact that Ten10 was
involved at a very early stage of the project,
when environments and system features aren’t
always stable enough to undergo performance
testing.

We integrated with the team early on, gathering
requirements and aligning the performance
testing approach to the development effort.

To overcome issues with features not being
delivered on time or environments being
unstable, and limit delays and disruptions in
testing, we followed an agile approach by
adjusting load tests to the existing stable
functionality. This allowed the early provision
of feedback to the development team, the
quick discovery and efficient diagnosis of
performance issues, and the prompt resolution
of bugs.

Success story

Ten10 integrated well with the development
team, which was very supportive, and
the load test rig was well provisioned.

Delivery was massively improved due to our
extensive analysis and our recommended
changes to improve performance. For example,
based on our analysis, we recommended
a configuration change that improved
the system’s response times by about 40
percent. We also provided our scripts to the
client to allow them a repeatable execution,
so that they could validate additional fixes.

After Suggested Fix - Transaction Time Graph and loadBefore Suggested Fix - Transaction Time Graph and load

